Physics 216, Quiz 2

November 29, 2016, 90 minutes
Do 8 problems out of 10 .

1. A function $f(x)=\left\{\begin{aligned}-x, & -\pi<x<0 \\ x, & 0<x<\pi\end{aligned}\right.$. Is this function even or odd? Find the Fourier series.
2. The Fourier series of the function $f(x)$ of period $L=2$ which is equal to x on the interval $(-1,1)$ is given by

$$
f(x)=-\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n} \sin n \pi x
$$

Use this expansion and Parseval theorem to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
3. Find the Fourier transform $F(\omega)$ of the function $f(t)=e^{-a|t|}$ where $a>0$.
4. A rectangular pulse is represented by $f(t)=\left\{\begin{array}{ll}1, & |t|<a \\ 0, & |t|>a\end{array}\right.$. Find Fourier transform and use the convolution theorem $\int_{-\infty}^{\infty} f(t) f^{*}(t) d t=\int_{-\infty}^{\infty} F(\omega) F^{*}(\omega) d \omega$ to evaluate the integral $\int_{0}^{\infty} \frac{\sin ^{2} \omega}{\omega^{2}} d \omega$.
5. Consider the Sturm-Liouville operator $£ y=\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+n^{2} y=0$. Find the weight function $w(x)$ for this operator to be self-adjoint.
6. Use the recursion relation of the Legendre polynomials

$$
(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)
$$

and the values $P_{0}=1, P_{1}=x$ to prove by induction that $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
7. Given a set of orthogonal functions $\left\{Q_{n}(x)\right\}$ satisfying the Sturm-Liouville equation

$$
\begin{equation*}
£ Q_{n}=\frac{1}{w} \frac{d}{d x}\left(w \frac{d Q_{n}}{d x}\right)+\gamma Q_{n}=0 \tag{1}
\end{equation*}
$$

with weight functions $w(x)$ so that $\int w(x) Q_{n}^{*}(x) Q_{m}(x) d x=0$, if $n \neq m$. Show that the functions $\left\{Q_{n}^{\prime}(x)\right\}$ are orthogonal functions with weight $w(x) \alpha(x)$. Hint: Substitute in the integral $\int w(x) Q_{n}^{*}(x) £ Q_{m}(x) d x=0$.
8. Express the function $f(\theta, \phi)=\sin \theta\left(\sin ^{2} \frac{\theta}{2} \cos \phi+i \cos ^{2} \frac{\theta}{2} \sin \phi\right)+\sin ^{2} \frac{\theta}{2}$ as a sum of spherical harmonics. Use the values of $Y_{l}^{m}(\theta, \phi)$ given in Table 15.4 page 760 in Arfken.
9. Hermite polynomials are defined by $g(x, t)=\exp \left(-t^{2}+2 t x\right)=\sum_{n=0}^{\infty} t^{n} H_{n}(x)$. Use this to prove that $H_{n}(-x)=(-1)^{n} H_{n}(x)$. Multiply $g(x, t)$ by $e^{-\frac{x^{2}}{2}}$ and integrate to show that $\int_{0}^{\infty} e^{-\frac{x^{2}}{2}} H_{n}(x) d x=0$ if $n=2 m+1$.
10. Use the relation

$$
x L_{n}^{k}=(2 n+k+1) L_{n}^{k}-(n+k) L_{n-1}^{k}-(n+1) L_{n+1}^{k}
$$

to show that

$$
\int_{0}^{\infty} e^{-x} x^{k+1} L_{n}^{k}(x) L_{n}^{k}(x) d x=\frac{(n+k)!}{n!}(2 n+k+1)
$$

